extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×Dic5).1C22 = Dic3⋊5Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).1C2^2 | 480,400 |
(C6×Dic5).2C22 = Dic15⋊5Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).2C2^2 | 480,401 |
(C6×Dic5).3C22 = (C2×C20).D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).3C2^2 | 480,402 |
(C6×Dic5).4C22 = Dic15⋊1Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).4C2^2 | 480,403 |
(C6×Dic5).5C22 = Dic3⋊Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).5C2^2 | 480,404 |
(C6×Dic5).6C22 = Dic15⋊Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).6C2^2 | 480,405 |
(C6×Dic5).7C22 = Dic3×Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).7C2^2 | 480,406 |
(C6×Dic5).8C22 = Dic15⋊6Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).8C2^2 | 480,407 |
(C6×Dic5).9C22 = Dic5.1Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).9C2^2 | 480,410 |
(C6×Dic5).10C22 = Dic5.2Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).10C2^2 | 480,411 |
(C6×Dic5).11C22 = Dic15.Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).11C2^2 | 480,412 |
(C6×Dic5).12C22 = C4⋊Dic3⋊D5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).12C2^2 | 480,413 |
(C6×Dic5).13C22 = (S3×C20)⋊5C4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).13C2^2 | 480,414 |
(C6×Dic5).14C22 = Dic15.2Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).14C2^2 | 480,415 |
(C6×Dic5).15C22 = Dic30⋊14C4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).15C2^2 | 480,416 |
(C6×Dic5).16C22 = D6⋊C4.D5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).16C2^2 | 480,417 |
(C6×Dic5).17C22 = C60⋊5C4⋊C2 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).17C2^2 | 480,418 |
(C6×Dic5).18C22 = Dic3.Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).18C2^2 | 480,419 |
(C6×Dic5).19C22 = Dic15⋊7Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).19C2^2 | 480,420 |
(C6×Dic5).20C22 = C4⋊Dic5⋊S3 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).20C2^2 | 480,421 |
(C6×Dic5).21C22 = Dic3.2Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).21C2^2 | 480,422 |
(C6×Dic5).22C22 = (C4×D15)⋊8C4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).22C2^2 | 480,423 |
(C6×Dic5).23C22 = D6⋊Dic5⋊C2 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).23C2^2 | 480,427 |
(C6×Dic5).24C22 = D6⋊Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).24C2^2 | 480,428 |
(C6×Dic5).25C22 = Dic3.D20 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).25C2^2 | 480,429 |
(C6×Dic5).26C22 = D30.34D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).26C2^2 | 480,430 |
(C6×Dic5).27C22 = D30.35D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).27C2^2 | 480,431 |
(C6×Dic5).28C22 = D30.D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).28C2^2 | 480,432 |
(C6×Dic5).29C22 = (C2×C12).D10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).29C2^2 | 480,437 |
(C6×Dic5).30C22 = (C2×C60).C22 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).30C2^2 | 480,438 |
(C6×Dic5).31C22 = (C4×Dic3)⋊D5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).31C2^2 | 480,439 |
(C6×Dic5).32C22 = C60.45D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).32C2^2 | 480,441 |
(C6×Dic5).33C22 = (C4×Dic15)⋊C2 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).33C2^2 | 480,442 |
(C6×Dic5).34C22 = D6⋊Dic5.C2 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).34C2^2 | 480,443 |
(C6×Dic5).35C22 = C60.46D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).35C2^2 | 480,445 |
(C6×Dic5).36C22 = C60.89D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).36C2^2 | 480,446 |
(C6×Dic5).37C22 = C60.47D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).37C2^2 | 480,450 |
(C6×Dic5).38C22 = D30⋊8Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).38C2^2 | 480,453 |
(C6×Dic5).39C22 = Dic3.3Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).39C2^2 | 480,455 |
(C6×Dic5).40C22 = C10.D4⋊S3 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).40C2^2 | 480,456 |
(C6×Dic5).41C22 = C60.6Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).41C2^2 | 480,457 |
(C6×Dic5).42C22 = Dic15.4Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).42C2^2 | 480,458 |
(C6×Dic5).43C22 = D30⋊9Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).43C2^2 | 480,459 |
(C6×Dic5).44C22 = C12.Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).44C2^2 | 480,460 |
(C6×Dic5).45C22 = Dic15⋊8Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).45C2^2 | 480,461 |
(C6×Dic5).46C22 = C60.48D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).46C2^2 | 480,465 |
(C6×Dic5).47C22 = D30⋊10Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).47C2^2 | 480,466 |
(C6×Dic5).48C22 = (D5×Dic3)⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).48C2^2 | 480,469 |
(C6×Dic5).49C22 = D10.19(C4×S3) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).49C2^2 | 480,470 |
(C6×Dic5).50C22 = Dic3⋊4D20 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).50C2^2 | 480,471 |
(C6×Dic5).51C22 = Dic15⋊13D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).51C2^2 | 480,472 |
(C6×Dic5).52C22 = S3×C10.D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).52C2^2 | 480,475 |
(C6×Dic5).53C22 = (S3×Dic5)⋊C4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).53C2^2 | 480,476 |
(C6×Dic5).54C22 = D30.23(C2×C4) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).54C2^2 | 480,479 |
(C6×Dic5).55C22 = D30.Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).55C2^2 | 480,480 |
(C6×Dic5).56C22 = Dic15⋊14D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).56C2^2 | 480,482 |
(C6×Dic5).57C22 = D6⋊1Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).57C2^2 | 480,486 |
(C6×Dic5).58C22 = D30⋊Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).58C2^2 | 480,487 |
(C6×Dic5).59C22 = D10.16D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).59C2^2 | 480,489 |
(C6×Dic5).60C22 = D10.17D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).60C2^2 | 480,490 |
(C6×Dic5).61C22 = Dic5⋊D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).61C2^2 | 480,492 |
(C6×Dic5).62C22 = D6⋊2Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).62C2^2 | 480,493 |
(C6×Dic5).63C22 = D30⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).63C2^2 | 480,495 |
(C6×Dic5).64C22 = D30⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).64C2^2 | 480,496 |
(C6×Dic5).65C22 = D10⋊1Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).65C2^2 | 480,497 |
(C6×Dic5).66C22 = D10⋊2Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).66C2^2 | 480,498 |
(C6×Dic5).67C22 = (C2×D12).D5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).67C2^2 | 480,499 |
(C6×Dic5).68C22 = D30⋊3Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).68C2^2 | 480,500 |
(C6×Dic5).69C22 = S3×C4⋊Dic5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).69C2^2 | 480,502 |
(C6×Dic5).70C22 = D6.D20 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).70C2^2 | 480,503 |
(C6×Dic5).71C22 = D60⋊14C4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).71C2^2 | 480,504 |
(C6×Dic5).72C22 = D30⋊4Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).72C2^2 | 480,505 |
(C6×Dic5).73C22 = Dic15.D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).73C2^2 | 480,506 |
(C6×Dic5).74C22 = D10⋊4Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).74C2^2 | 480,507 |
(C6×Dic5).75C22 = D6⋊3Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).75C2^2 | 480,508 |
(C6×Dic5).76C22 = D30.6D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).76C2^2 | 480,509 |
(C6×Dic5).77C22 = Dic15⋊8D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).77C2^2 | 480,511 |
(C6×Dic5).78C22 = D6⋊4Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).78C2^2 | 480,512 |
(C6×Dic5).79C22 = D30.2Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).79C2^2 | 480,513 |
(C6×Dic5).80C22 = D30.7D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).80C2^2 | 480,514 |
(C6×Dic5).81C22 = C15⋊17(C4×D4) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).81C2^2 | 480,517 |
(C6×Dic5).82C22 = Dic15⋊9D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).82C2^2 | 480,518 |
(C6×Dic5).83C22 = C15⋊22(C4×D4) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).83C2^2 | 480,522 |
(C6×Dic5).84C22 = D10⋊C4⋊S3 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).84C2^2 | 480,528 |
(C6×Dic5).85C22 = Dic15⋊2D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).85C2^2 | 480,529 |
(C6×Dic5).86C22 = D6⋊D20 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).86C2^2 | 480,530 |
(C6×Dic5).87C22 = (C2×Dic6)⋊D5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).87C2^2 | 480,531 |
(C6×Dic5).88C22 = D6.9D20 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).88C2^2 | 480,533 |
(C6×Dic5).89C22 = D30⋊2D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).89C2^2 | 480,535 |
(C6×Dic5).90C22 = C60⋊6D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).90C2^2 | 480,536 |
(C6×Dic5).91C22 = D30⋊12D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).91C2^2 | 480,537 |
(C6×Dic5).92C22 = Dic15.10D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).92C2^2 | 480,538 |
(C6×Dic5).93C22 = Dic15.31D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).93C2^2 | 480,540 |
(C6×Dic5).94C22 = C20⋊2D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).94C2^2 | 480,542 |
(C6×Dic5).95C22 = C20⋊4Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).95C2^2 | 480,545 |
(C6×Dic5).96C22 = C20⋊Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).96C2^2 | 480,546 |
(C6×Dic5).97C22 = C23.D5⋊S3 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).97C2^2 | 480,601 |
(C6×Dic5).98C22 = Dic15.19D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).98C2^2 | 480,602 |
(C6×Dic5).99C22 = C23.26(S3×D5) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).99C2^2 | 480,605 |
(C6×Dic5).100C22 = C23.13(S3×D5) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).100C2^2 | 480,606 |
(C6×Dic5).101C22 = C23.14(S3×D5) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).101C2^2 | 480,607 |
(C6×Dic5).102C22 = C23.48(S3×D5) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).102C2^2 | 480,608 |
(C6×Dic5).103C22 = D30⋊6D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).103C2^2 | 480,609 |
(C6×Dic5).104C22 = C6.(D4×D5) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).104C2^2 | 480,610 |
(C6×Dic5).105C22 = (C2×C30).D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).105C2^2 | 480,612 |
(C6×Dic5).106C22 = C6.(C2×D20) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).106C2^2 | 480,613 |
(C6×Dic5).107C22 = C10.(C2×D12) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).107C2^2 | 480,618 |
(C6×Dic5).108C22 = (C2×C10).D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).108C2^2 | 480,619 |
(C6×Dic5).109C22 = C23.17(S3×D5) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).109C2^2 | 480,624 |
(C6×Dic5).110C22 = (C6×D5)⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).110C2^2 | 480,625 |
(C6×Dic5).111C22 = Dic15⋊3D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).111C2^2 | 480,626 |
(C6×Dic5).112C22 = Dic3×C5⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).112C2^2 | 480,629 |
(C6×Dic5).113C22 = (S3×C10).D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).113C2^2 | 480,631 |
(C6×Dic5).114C22 = C15⋊28(C4×D4) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).114C2^2 | 480,632 |
(C6×Dic5).115C22 = D30⋊7D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).115C2^2 | 480,633 |
(C6×Dic5).116C22 = Dic15⋊4D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).116C2^2 | 480,634 |
(C6×Dic5).117C22 = Dic15⋊16D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).117C2^2 | 480,635 |
(C6×Dic5).118C22 = Dic15⋊17D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).118C2^2 | 480,636 |
(C6×Dic5).119C22 = D30.16D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).119C2^2 | 480,638 |
(C6×Dic5).120C22 = (S3×C10)⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).120C2^2 | 480,641 |
(C6×Dic5).121C22 = Dic15⋊5D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).121C2^2 | 480,643 |
(C6×Dic5).122C22 = (C2×C6)⋊D20 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).122C2^2 | 480,645 |
(C6×Dic5).123C22 = Dic15⋊18D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).123C2^2 | 480,647 |
(C6×Dic5).124C22 = (C2×C10)⋊8Dic6 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).124C2^2 | 480,651 |
(C6×Dic5).125C22 = Dic15.48D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).125C2^2 | 480,652 |
(C6×Dic5).126C22 = C2×S3×Dic10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).126C2^2 | 480,1078 |
(C6×Dic5).127C22 = C2×D12⋊D5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).127C2^2 | 480,1079 |
(C6×Dic5).128C22 = C30.C24 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | 4 | (C6xDic5).128C2^2 | 480,1080 |
(C6×Dic5).129C22 = C2×D60⋊C2 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).129C2^2 | 480,1081 |
(C6×Dic5).130C22 = C2×D15⋊Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).130C2^2 | 480,1082 |
(C6×Dic5).131C22 = C15⋊2- 1+4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | 8- | (C6xDic5).131C2^2 | 480,1096 |
(C6×Dic5).132C22 = C2×Dic5.D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).132C2^2 | 480,1113 |
(C6×Dic5).133C22 = C2×C30.C23 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).133C2^2 | 480,1114 |
(C6×Dic5).134C22 = Dic3×C5⋊C8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).134C2^2 | 480,244 |
(C6×Dic5).135C22 = C30.M4(2) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).135C2^2 | 480,245 |
(C6×Dic5).136C22 = Dic5.22D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).136C2^2 | 480,246 |
(C6×Dic5).137C22 = D30⋊C8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).137C2^2 | 480,247 |
(C6×Dic5).138C22 = Dic5.D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 120 | 8+ | (C6xDic5).138C2^2 | 480,250 |
(C6×Dic5).139C22 = Dic5.4D12 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | 8- | (C6xDic5).139C2^2 | 480,251 |
(C6×Dic5).140C22 = C30.4M4(2) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).140C2^2 | 480,252 |
(C6×Dic5).141C22 = Dic15⋊C8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).141C2^2 | 480,253 |
(C6×Dic5).142C22 = C2×S3×C5⋊C8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).142C2^2 | 480,1002 |
(C6×Dic5).143C22 = C5⋊C8.D6 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | 8 | (C6xDic5).143C2^2 | 480,1003 |
(C6×Dic5).144C22 = S3×C22.F5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 120 | 8- | (C6xDic5).144C2^2 | 480,1004 |
(C6×Dic5).145C22 = D15⋊C8⋊C2 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | 8 | (C6xDic5).145C2^2 | 480,1005 |
(C6×Dic5).146C22 = C2×D15⋊C8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).146C2^2 | 480,1006 |
(C6×Dic5).147C22 = D15⋊2M4(2) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 120 | 8+ | (C6xDic5).147C2^2 | 480,1007 |
(C6×Dic5).148C22 = C2×D6.F5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).148C2^2 | 480,1008 |
(C6×Dic5).149C22 = C2×Dic3.F5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).149C2^2 | 480,1009 |
(C6×Dic5).150C22 = C3×C20⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).150C2^2 | 480,662 |
(C6×Dic5).151C22 = C3×C20.6Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).151C2^2 | 480,663 |
(C6×Dic5).152C22 = C3×C4.D20 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).152C2^2 | 480,668 |
(C6×Dic5).153C22 = C3×C42⋊2D5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).153C2^2 | 480,669 |
(C6×Dic5).154C22 = C3×C23.D10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).154C2^2 | 480,672 |
(C6×Dic5).155C22 = C3×D10.12D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).155C2^2 | 480,676 |
(C6×Dic5).156C22 = C3×D10⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).156C2^2 | 480,677 |
(C6×Dic5).157C22 = C3×C22.D20 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).157C2^2 | 480,679 |
(C6×Dic5).158C22 = C3×D10.13D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).158C2^2 | 480,687 |
(C6×Dic5).159C22 = C3×D10⋊Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).159C2^2 | 480,689 |
(C6×Dic5).160C22 = C3×D10⋊2Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).160C2^2 | 480,690 |
(C6×Dic5).161C22 = C3×C20.48D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).161C2^2 | 480,717 |
(C6×Dic5).162C22 = C3×C23.23D10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).162C2^2 | 480,722 |
(C6×Dic5).163C22 = C3×C20⋊7D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).163C2^2 | 480,723 |
(C6×Dic5).164C22 = C3×C20⋊2D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).164C2^2 | 480,731 |
(C6×Dic5).165C22 = C3×Dic5⋊D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).165C2^2 | 480,732 |
(C6×Dic5).166C22 = C3×D10⋊3Q8 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).166C2^2 | 480,739 |
(C6×Dic5).167C22 = C3×D4.10D10 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | 4 | (C6xDic5).167C2^2 | 480,1147 |
(C6×Dic5).168C22 = (C2×C60).C4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | 4 | (C6xDic5).168C2^2 | 480,310 |
(C6×Dic5).169C22 = C5⋊(C12.D4) | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 120 | 4 | (C6xDic5).169C2^2 | 480,318 |
(C6×Dic5).170C22 = Dic10.Dic3 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | 8 | (C6xDic5).170C2^2 | 480,1066 |
(C6×Dic5).171C22 = C3×Dic5.D4 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | 4 | (C6xDic5).171C2^2 | 480,285 |
(C6×Dic5).172C22 = C3×C23.F5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 120 | 4 | (C6xDic5).172C2^2 | 480,293 |
(C6×Dic5).173C22 = C3×D4.F5 | φ: C22/C1 → C22 ⊆ Out C6×Dic5 | 240 | 8 | (C6xDic5).173C2^2 | 480,1053 |
(C6×Dic5).174C22 = Dic5⋊5Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).174C2^2 | 480,399 |
(C6×Dic5).175C22 = Dic5×Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).175C2^2 | 480,408 |
(C6×Dic5).176C22 = Dic30⋊17C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).176C2^2 | 480,409 |
(C6×Dic5).177C22 = Dic3⋊C4⋊D5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).177C2^2 | 480,424 |
(C6×Dic5).178C22 = D10⋊Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).178C2^2 | 480,425 |
(C6×Dic5).179C22 = Dic5.8D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).179C2^2 | 480,426 |
(C6×Dic5).180C22 = (D5×C12)⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).180C2^2 | 480,433 |
(C6×Dic5).181C22 = (C4×D5)⋊Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).181C2^2 | 480,434 |
(C6×Dic5).182C22 = C60.67D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).182C2^2 | 480,435 |
(C6×Dic5).183C22 = C60.68D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).183C2^2 | 480,436 |
(C6×Dic5).184C22 = (S3×C20)⋊7C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).184C2^2 | 480,447 |
(C6×Dic5).185C22 = C5⋊(C42⋊3S3) | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).185C2^2 | 480,448 |
(C6×Dic5).186C22 = C60.69D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).186C2^2 | 480,449 |
(C6×Dic5).187C22 = C60.70D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).187C2^2 | 480,451 |
(C6×Dic5).188C22 = Dic5⋊Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).188C2^2 | 480,452 |
(C6×Dic5).189C22 = Dic5.7Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).189C2^2 | 480,454 |
(C6×Dic5).190C22 = (C4×D15)⋊10C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).190C2^2 | 480,462 |
(C6×Dic5).191C22 = (C4×Dic5)⋊S3 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).191C2^2 | 480,463 |
(C6×Dic5).192C22 = C20.Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).192C2^2 | 480,464 |
(C6×Dic5).193C22 = C4×D5×Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).193C2^2 | 480,467 |
(C6×Dic5).194C22 = D5×Dic3⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).194C2^2 | 480,468 |
(C6×Dic5).195C22 = C4×S3×Dic5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).195C2^2 | 480,473 |
(C6×Dic5).196C22 = D6.(C4×D5) | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).196C2^2 | 480,474 |
(C6×Dic5).197C22 = C4×D30.C2 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).197C2^2 | 480,477 |
(C6×Dic5).198C22 = D30.C2⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).198C2^2 | 480,478 |
(C6×Dic5).199C22 = Dic5⋊4D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).199C2^2 | 480,481 |
(C6×Dic5).200C22 = D5×C4⋊Dic3 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).200C2^2 | 480,488 |
(C6×Dic5).201C22 = Dic5×D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).201C2^2 | 480,491 |
(C6×Dic5).202C22 = D60⋊17C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).202C2^2 | 480,494 |
(C6×Dic5).203C22 = C4×C15⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).203C2^2 | 480,515 |
(C6×Dic5).204C22 = D6⋊(C4×D5) | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).204C2^2 | 480,516 |
(C6×Dic5).205C22 = C4×C3⋊D20 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).205C2^2 | 480,519 |
(C6×Dic5).206C22 = C15⋊20(C4×D4) | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).206C2^2 | 480,520 |
(C6×Dic5).207C22 = C4×C5⋊D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).207C2^2 | 480,521 |
(C6×Dic5).208C22 = D6⋊C4⋊D5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).208C2^2 | 480,523 |
(C6×Dic5).209C22 = D10⋊D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).209C2^2 | 480,524 |
(C6×Dic5).210C22 = C60⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).210C2^2 | 480,525 |
(C6×Dic5).211C22 = C12⋊7D20 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).211C2^2 | 480,526 |
(C6×Dic5).212C22 = C20⋊D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).212C2^2 | 480,527 |
(C6×Dic5).213C22 = C4×C15⋊Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).213C2^2 | 480,543 |
(C6×Dic5).214C22 = C60⋊Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).214C2^2 | 480,544 |
(C6×Dic5).215C22 = C2×Dic3×Dic5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).215C2^2 | 480,603 |
(C6×Dic5).216C22 = (C6×Dic5)⋊7C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).216C2^2 | 480,604 |
(C6×Dic5).217C22 = C30.(C2×D4) | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).217C2^2 | 480,615 |
(C6×Dic5).218C22 = C2×C30.Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).218C2^2 | 480,617 |
(C6×Dic5).219C22 = C2×Dic15⋊5C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).219C2^2 | 480,620 |
(C6×Dic5).220C22 = C2×C6.Dic10 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).220C2^2 | 480,621 |
(C6×Dic5).221C22 = C6.D4⋊D5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).221C2^2 | 480,622 |
(C6×Dic5).222C22 = Dic5×C3⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).222C2^2 | 480,627 |
(C6×Dic5).223C22 = C15⋊26(C4×D4) | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).223C2^2 | 480,628 |
(C6×Dic5).224C22 = (C2×C10)⋊4D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).224C2^2 | 480,642 |
(C6×Dic5).225C22 = (C2×C30)⋊Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).225C2^2 | 480,650 |
(C6×Dic5).226C22 = C2×D5×Dic6 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).226C2^2 | 480,1073 |
(C6×Dic5).227C22 = C2×D6.D10 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).227C2^2 | 480,1083 |
(C6×Dic5).228C22 = C2×D12⋊5D5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).228C2^2 | 480,1084 |
(C6×Dic5).229C22 = C2×C12.28D10 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).229C2^2 | 480,1085 |
(C6×Dic5).230C22 = C22×C15⋊Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).230C2^2 | 480,1121 |
(C6×Dic5).231C22 = C12×Dic10 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).231C2^2 | 480,661 |
(C6×Dic5).232C22 = C3×C42⋊D5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).232C2^2 | 480,665 |
(C6×Dic5).233C22 = C12×D20 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).233C2^2 | 480,666 |
(C6×Dic5).234C22 = C3×Dic5.14D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).234C2^2 | 480,671 |
(C6×Dic5).235C22 = C3×Dic5⋊4D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).235C2^2 | 480,674 |
(C6×Dic5).236C22 = C3×Dic5.5D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).236C2^2 | 480,678 |
(C6×Dic5).237C22 = C3×Dic5⋊3Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).237C2^2 | 480,680 |
(C6×Dic5).238C22 = C3×C20⋊Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).238C2^2 | 480,681 |
(C6×Dic5).239C22 = C3×Dic5.Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).239C2^2 | 480,682 |
(C6×Dic5).240C22 = C3×C4.Dic10 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).240C2^2 | 480,683 |
(C6×Dic5).241C22 = C3×D5×C4⋊C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).241C2^2 | 480,684 |
(C6×Dic5).242C22 = C3×C4⋊C4⋊7D5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).242C2^2 | 480,685 |
(C6×Dic5).243C22 = C3×C4⋊D20 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).243C2^2 | 480,688 |
(C6×Dic5).244C22 = C3×C4⋊C4⋊D5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).244C2^2 | 480,691 |
(C6×Dic5).245C22 = C6×C10.D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).245C2^2 | 480,716 |
(C6×Dic5).246C22 = C6×C4⋊Dic5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).246C2^2 | 480,718 |
(C6×Dic5).247C22 = C3×C23.21D10 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).247C2^2 | 480,719 |
(C6×Dic5).248C22 = C12×C5⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).248C2^2 | 480,721 |
(C6×Dic5).249C22 = C3×D4×Dic5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).249C2^2 | 480,727 |
(C6×Dic5).250C22 = C3×C23.18D10 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).250C2^2 | 480,728 |
(C6×Dic5).251C22 = C3×C20.17D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).251C2^2 | 480,729 |
(C6×Dic5).252C22 = C3×C20⋊D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).252C2^2 | 480,733 |
(C6×Dic5).253C22 = C3×Dic5⋊Q8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).253C2^2 | 480,737 |
(C6×Dic5).254C22 = C3×Q8×Dic5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).254C2^2 | 480,738 |
(C6×Dic5).255C22 = C3×C20.23D4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).255C2^2 | 480,740 |
(C6×Dic5).256C22 = C2×C6×Dic10 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).256C2^2 | 480,1135 |
(C6×Dic5).257C22 = C6×C4○D20 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).257C2^2 | 480,1138 |
(C6×Dic5).258C22 = C6×Q8×D5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).258C2^2 | 480,1142 |
(C6×Dic5).259C22 = C4×C15⋊C8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).259C2^2 | 480,305 |
(C6×Dic5).260C22 = C60⋊C8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).260C2^2 | 480,306 |
(C6×Dic5).261C22 = C30.11C42 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).261C2^2 | 480,307 |
(C6×Dic5).262C22 = C30.7M4(2) | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).262C2^2 | 480,308 |
(C6×Dic5).263C22 = Dic5.13D12 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).263C2^2 | 480,309 |
(C6×Dic5).264C22 = C30.22M4(2) | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).264C2^2 | 480,317 |
(C6×Dic5).265C22 = C2×C60.C4 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).265C2^2 | 480,1060 |
(C6×Dic5).266C22 = C2×C12.F5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).266C2^2 | 480,1061 |
(C6×Dic5).267C22 = C60.59(C2×C4) | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 120 | 4 | (C6xDic5).267C2^2 | 480,1062 |
(C6×Dic5).268C22 = C22×C15⋊C8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).268C2^2 | 480,1070 |
(C6×Dic5).269C22 = C2×C15⋊8M4(2) | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).269C2^2 | 480,1071 |
(C6×Dic5).270C22 = C12×C5⋊C8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).270C2^2 | 480,280 |
(C6×Dic5).271C22 = C3×C20⋊C8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).271C2^2 | 480,281 |
(C6×Dic5).272C22 = C3×C10.C42 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).272C2^2 | 480,282 |
(C6×Dic5).273C22 = C3×D10⋊C8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).273C2^2 | 480,283 |
(C6×Dic5).274C22 = C3×Dic5⋊C8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).274C2^2 | 480,284 |
(C6×Dic5).275C22 = C3×C23.2F5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).275C2^2 | 480,292 |
(C6×Dic5).276C22 = C6×D5⋊C8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).276C2^2 | 480,1047 |
(C6×Dic5).277C22 = C6×C4.F5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).277C2^2 | 480,1048 |
(C6×Dic5).278C22 = C3×D5⋊M4(2) | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 120 | 4 | (C6xDic5).278C2^2 | 480,1049 |
(C6×Dic5).279C22 = C2×C6×C5⋊C8 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 480 | | (C6xDic5).279C2^2 | 480,1057 |
(C6×Dic5).280C22 = C6×C22.F5 | φ: C22/C2 → C2 ⊆ Out C6×Dic5 | 240 | | (C6xDic5).280C2^2 | 480,1058 |
(C6×Dic5).281C22 = D5×C4×C12 | φ: trivial image | 240 | | (C6xDic5).281C2^2 | 480,664 |
(C6×Dic5).282C22 = C3×C23.11D10 | φ: trivial image | 240 | | (C6xDic5).282C2^2 | 480,670 |
(C6×Dic5).283C22 = C3×D20⋊8C4 | φ: trivial image | 240 | | (C6xDic5).283C2^2 | 480,686 |
(C6×Dic5).284C22 = Dic5×C2×C12 | φ: trivial image | 480 | | (C6xDic5).284C2^2 | 480,715 |
(C6×Dic5).285C22 = C6×Q8⋊2D5 | φ: trivial image | 240 | | (C6xDic5).285C2^2 | 480,1143 |